Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E407-E416, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324261

RESUMO

The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.


Assuntos
Compostos Alílicos , Cisteína , Cisteína/análogos & derivados , Hidrocarbonetos Clorados , Doenças Metabólicas , Succinatos , Humanos , Cisteína/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas , Fumaratos/metabolismo
2.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360757

RESUMO

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Assuntos
Glicosaminoglicanos , Neoplasias Ovarianas , Humanos , Feminino , Glicosaminoglicanos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Heparitina Sulfato/metabolismo
3.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293017

RESUMO

More than one million people in the United States and over 38 million people worldwide are living with human immunodeficiency virus (HIV) infection. Antiretroviral therapy (ART) greatly improves the health of people living with HIV (PLWH); however, the increased life longevity of PLWH has revealed consequences of HIV-associated comorbidities. HIV can enter the brain and cause inflammation even in individuals with well-controlled HIV infection. The quality of life for PLWH can be compromised by cognitive deficits and memory loss, termed HIV-associated neurological disorders (HAND). HIV-associated dementia is a related but distinct diagnosis. Common causes of dementia in PLWH are similar to the general population and can affect cognition. There is an urgent need to identify treatments for the aging PWLH population. We previously developed AI-based biomedical literature mining systems to uncover a potential novel connection between HAND the renin-angiotensin system (RAAS), which is a pharmacological target for hypertension. RAAS-targeting anti-hypertensives are gaining attention for their protective benefits in several neurocognitive disorders. To our knowledge, the effect of RAAS-targeting drugs on the cognition of PLWH development of dementia has not previously been analyzed. We hypothesized that exposure to angiotensin-converting enzyme inhibitors (ACEi) that cross the blood brain barrier (BBB) reduces the risk/occurrence of dementia in PLWH. We report a retrospective cohort study of electronic health records (EHRs) to examine the proposed hypothesis using data from the United States Department of Veterans Affairs, in which a primary outcome of dementia was measured in controlled cohorts of patients exposed to BBB-penetrant ACEi versus those unexposed to BBB-penetrant ACEi. The results reveal a statistically significant reduction in dementia diagnosis for PLWH exposed to BBB-penetrant ACEi. These results suggest there is a potential protective effect of BBB ACE inhibitor exposure against dementia in PLWH that warrants further investigation.

4.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808776

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

5.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693479

RESUMO

In pathologies such as cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.

6.
Nucleic Acids Res ; 51(14): 7288-7313, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37378433

RESUMO

We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.


Assuntos
Quinases Ciclina-Dependentes , Complexo Mediador , Humanos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fosforilação , Proteômica , RNA/metabolismo
7.
Pharmacol Biochem Behav ; 229: 173592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390973

RESUMO

Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.


Assuntos
Microbioma Gastrointestinal , HIV-1 , Humanos , Disbiose/complicações , Disbiose/microbiologia
8.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Genomics ; 22(1): 662, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521341

RESUMO

BACKGROUND: Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS: High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS: This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.


Assuntos
Altitude , Peromyscus , Animais , Genômica , Modelos Animais , Peromyscus/genética , Polimorfismo Genético
10.
Biochem Pharmacol ; 182: 114280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049245

RESUMO

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Assuntos
Azepinas/farmacologia , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo
11.
Clin Exp Pharmacol Physiol ; 47(10): 1758-1763, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585033

RESUMO

We hypothesized that the correlation of the whole transcriptome with quantifiable phenotypes may unveil genes contributing to the regulation of the corresponding response. We tested this hypothesis in cultured fibroblasts exposed to diverse pharmacological and biological agents, to identify genes influencing chemoattraction of breast cancer cells. Our analyses revealed several genes that correlated, either positively or negatively with cell migration, suggesting that they may operate as activators or inhibitors of this process. Survey of the scientific literature showed that genes exhibiting positive or negative association with cell migration had frequently been linked to cancer and metastasis before, while those with minimal association were not. The current methodology may formulate the basis for the development of novel strategies linking genes to quantifiable phenotypes.


Assuntos
Movimento Celular , Comunicação Parácrina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos
12.
Cell Chem Biol ; 27(7): 839-849.e4, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553119

RESUMO

Arginyltransferase ATE1 mediates posttranslational arginylation and plays key roles in multiple physiological processes. ATE1 utilizes arginyl (Arg)-tRNAArg as the donor of Arg, putting this reaction into a direct competition with the protein synthesis machinery. Here, we address the question of ATE1- Arg-tRNAArg specificity as a potential mechanism enabling this competition in vivo. Using in vitro arginylation assays and Ate1 knockout models, we find that, in addition to full-length tRNA, ATE1 is also able to utilize short tRNAArg fragments that bear structural resemblance to tRNA-derived fragments (tRF), a recently discovered class of small regulatory non-coding RNAs with global emerging biological role. Ate1 knockout cells show a decrease in tRFArg generation and a significant increase in the ratio of tRNAArg:tRFArg compared with wild type, suggesting a functional link between tRFArg and arginylation. We propose that generation of physiologically important tRFs can serve as a switch between translation and protein arginylation.


Assuntos
Aminoaciltransferases/metabolismo , Arginina/metabolismo , RNA de Transferência de Arginina/metabolismo , Aminoaciltransferases/genética , Angiotensina II/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
13.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31802418

RESUMO

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Assuntos
Azepinas/farmacologia , Cocaína/toxicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Imidazóis/farmacologia , Microglia/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/enzimologia , Animais , Azepinas/uso terapêutico , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Inibidores da Captação de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Feminino , Imidazóis/uso terapêutico , Masculino , Microglia/enzimologia , Ratos , Ratos Sprague-Dawley
14.
Cells ; 8(8)2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382571

RESUMO

CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types.


Assuntos
Ciclina C/fisiologia , Quinase 8 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Ciclina C/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
DNA Cell Biol ; 38(9): 969-981, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355672

RESUMO

Analysis of gene expression can be challenging, especially if it involves genetically diverse populations that exhibit high variation in their individual expression profile. Despite this variation, it is conceivable that in the same individuals a high degree of coordination is maintained between transcripts that belong to the same signaling modules and are associated with related biological functions. To explore this further, we calculated the correlation in the expression levels between each of ATF4, CHOP (DDIT3), GRP94, DNAJB9 (ERdj4), DNAJ3C (P58IPK), and HSPA5 (BiP/GRP78) with the whole transcriptome in primary fibroblasts from deer mice following induction of endoplasmic reticulum (ER) stress. Since these genes are associated with different transducers of the unfolded protein response (UPR), we postulated that their profile, in terms of correlation of transcripts, reflects distinct UPR branches engaged, and therefore different biological processes. Standard gene ontology analysis was able to predict major functions associated with the corresponding transcript, and of the UPR arm related to that, namely regulation of the apoptotic response by ATF4 (PERK arm) and the ER stress-associated degradation for GRP94 (IRE1). BiP, being a global regulator of the UPR, was associated with activation of ER stress in a rather global manner. Pairwise comparison in the correlation coefficients for these genes' associated transcriptome showed the relevance of selected genes in terms of expression profiles. Conventional assessment of differential gene expression was incapable of providing meaningful information and pointed only to a generic association with stress. Collectively, this approach suggests that by evaluating the degree of coordination in gene expression, in genetically diverse biological specimens, may be useful in assigning genes in transcriptome networks, and more importantly in linking signaling nodules to specific biological functions and processes.


Assuntos
Estresse do Retículo Endoplasmático/genética , Animais , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peromyscus , Transcriptoma , Tunicamicina/farmacologia
16.
Mol Cell Proteomics ; 17(11): 2091-2106, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30038033

RESUMO

mRNA translation in axons enables neurons to introduce new proteins at sites distant from their cell body. mRNA-protein interactions drive this post-transcriptional regulation, yet knowledge of RNA binding proteins (RBP) in axons is limited. Here we used proteomics to identify RBPs interacting with the axonal localizing motifs of Nrn1, Hmgb1, Actb, and Gap43 mRNAs, revealing many novel RBPs in axons. Interestingly, no RBP is shared between all four RNA motifs, suggesting graded and overlapping specificities of RBP-mRNA pairings. A systematic assessment of axonal mRNAs interacting with hnRNP H1, hnRNP F, and hnRNP K, proteins that bound with high specificity to Nrn1 and Hmgb1, revealed that axonal mRNAs segregate into axon growth-associated RNA regulons based on hnRNP interactions. Axotomy increases axonal transport of hnRNPs H1, F, and K, depletion of these hnRNPs decreases axon growth and reduces axonal mRNA levels and axonal protein synthesis. Thus, subcellular hnRNP-interacting RNA regulons support neuronal growth and regeneration.


Assuntos
Axônios/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivos de Nucleotídeos/genética , RNA Mensageiro/genética , Regulon/genética , Regiões 5' não Traduzidas/genética , Animais , Transporte Axonal/genética , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
17.
Proc IEEE Int Conf Big Data ; 2018: 1494-1503, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789222

RESUMO

The first step of many research projects is to define and rank a short list of candidates for study. In the modern rapidity of scientific progress, some turn to automated hypothesis generation (HG) systems to aid this process. These systems can identify implicit or overlooked connections within a large scientific corpus, and while their importance grows alongside the pace of science, they lack thorough validation. Without any standard numerical evaluation method, many validate general-purpose HG systems by rediscovering a handful of historical findings, and some wishing to be more thorough may run laboratory experiments based on automatic suggestions. These methods are expensive, time consuming, and cannot scale. Thus, we present a numerical evaluation framework for the purpose of validating HG systems that leverages thousands of validation hypotheses. This method evaluates a HG system by its ability to rank hypotheses by plausibility; a process reminiscent of human candidate selection. Because HG systems do not produce a ranking criteria, specifically those that produce topic models, we additionally present novel metrics to quantify the plausibility of hypotheses given topic model system output. Finally, we demonstrate that our proposed validation method aligns with real-world research goals by deploying our method within MOLIERE, our recent topic-driven HG system, in order to automatically generate a set of candidate genes related to HIV-associated neurodegenerative disease (HAND). By performing laboratory experiments based on this candidate set, we discover a new connection between HAND and Dead Box RNA Helicase 3 (DDX3). Reproducibility: code, validation data, and results can be found at sybrandt.com/2018/validation.

18.
Proc Natl Acad Sci U S A ; 114(38): 10208-10213, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855340

RESUMO

The nuclear factor-κB (NFκB) family of transcription factors has been implicated in inflammatory disorders, viral infections, and cancer. Most of the drugs that inhibit NFκB show significant side effects, possibly due to sustained NFκB suppression. Drugs affecting induced, but not basal, NFκB activity may have the potential to provide therapeutic benefit without associated toxicity. NFκB activation by stress-inducible cell cycle inhibitor p21 was shown to be mediated by a p21-stimulated transcription-regulating kinase CDK8. CDK8 and its paralog CDK19, associated with the transcriptional Mediator complex, act as coregulators of several transcription factors implicated in cancer; CDK8/19 inhibitors are entering clinical development. Here we show that CDK8/19 inhibition by different small-molecule kinase inhibitors or shRNAs suppresses the elongation of NFκB-induced transcription when such transcription is activated by p21-independent canonical inducers, such as TNFα. On NFκB activation, CDK8/19 are corecruited with NFκB to the promoters of the responsive genes. Inhibition of CDK8/19 kinase activity suppresses the RNA polymerase II C-terminal domain phosphorylation required for transcriptional elongation, in a gene-specific manner. Genes coregulated by CDK8/19 and NFκB include IL8, CXCL1, and CXCL2, which encode tumor-promoting proinflammatory cytokines. Although it suppressed newly induced NFκB-driven transcription, CDK8/19 inhibition in most cases had no effect on the basal expression of NFκB-regulated genes or promoters; the same selective regulation of newly induced transcription was observed with other transcription signals potentiated by CDK8/19. This selective role of CDK8/19 identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development and differentiation as well as pathological processes.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , NF-kappa B/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Citocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos
19.
Pharmacotherapy ; 37(9): 1172-1190, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28672099

RESUMO

Interindividual variability in response to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, with regard to both efficacy and safety is an obvious target for pharmacogenetic research. Many genes have been identified as possible contributors to variability in statin response and safety. Genetic polymorphisms may alter the structure or expression of coded proteins, with potential impacts on lipid and statin absorption, distribution, metabolism, and elimination as well as response pathways related to the pharmacologic effect. Many studies have explored the variation in statins' pharmacokinetic and pharmacodynamic parameters; however, to our knowledge, few have established definitive relationships between the genetic polymorphisms and patient outcomes, such as cardiovascular events. In this review article, we provide a statin-based summary of available evidence describing pharmacogenetic associations that may be of clinical relevance in the future. Although currently available studies are often small or retrospective, and may have conflicting results, they may be useful in providing direction for future confirmatory studies and may point to associations that could be confirmed in the future when more patient outcomes-based studies are available. We also summarize the clinically relevant evidence currently available to assist clinicians with providing personalized pharmacotherapy for patients requiring statin therapy.


Assuntos
Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Farmacogenética/tendências , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Polimorfismo Genético/genética , Resultado do Tratamento
20.
Sci Rep ; 7: 43023, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223711

RESUMO

Targeted cancer therapeutics aim to exploit tumor-specific, genetic vulnerabilities specifically affecting neoplastic cells without similarly affecting normal cells. Here we performed sequencing-based screening of an shRNA library on a panel of cancer cells of different origins as well as normal cells. The shRNA library was designed to target a subset of genes previously identified using a whole genome screening approach. This focused shRNA library was infected into cells followed by analysis of enrichment and depletion of the shRNAs over the course of cell proliferation. We developed a bootstrap likelihood ratio test for the interpretation of the effects of multiple shRNAs over multiple cell line passages. Our analysis identified 44 genes whose depletion preferentially inhibited the growth of cancer cells. Among these genes ribosomal protein RPL35A, putative RNA helicase DDX24, and coatomer complex I (COPI) subunit ARCN1 most significantly inhibited growth of multiple cancer cell lines without affecting normal cell growth and survival. Further investigation revealed that the growth inhibition caused by DDX24 depletion is independent of p53 status underlining its value as a drug target. Overall, our study establishes a new approach for the analysis of proliferation-based shRNA selection strategies and identifies new targets for the development of cancer therapeutics.


Assuntos
Desenho de Fármacos , RNA Interferente Pequeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Coatomer/antagonistas & inibidores , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Biblioteca Gênica , Humanos , Funções Verossimilhança , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Proteínas Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...